From Ranked Lists to Carousels: A Carousel Click Model (2209.13426v1)
Abstract: Carousel-based recommendation interfaces allow users to explore recommended items in a structured, efficient, and visually-appealing way. This made them a de-facto standard approach to recommending items to end users in many real-life recommenders. In this work, we try to explain the efficiency of carousel recommenders using a \emph{carousel click model}, a generative model of user interaction with carousel-based recommender interfaces. We study this model both analytically and empirically. Our analytical results show that the user can examine more items in the carousel click model than in a single ranked list, due to the structured way of browsing. These results are supported by a series of experiments, where we integrate the carousel click model with a recommender based on matrix factorization. We show that the combined recommender performs well on held-out test data, and leads to higher engagement with recommendations than a traditional single ranked list.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.