Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Resource Allocation for Mobile Metaverse with the Internet of Vehicles over 6G Wireless Communications: A Deep Reinforcement Learning Approach (2209.13425v1)

Published 27 Sep 2022 in cs.NI, cs.LG, and eess.SP

Abstract: Improving the interactivity and interconnectivity between people is one of the highlights of the Metaverse. The Metaverse relies on a core approach, digital twinning, which is a means to replicate physical world objects, people, actions and scenes onto the virtual world. Being able to access scenes and information associated with the physical world, in the Metaverse in real-time and under mobility, is essential in developing a highly accessible, interactive and interconnective experience for all users. This development allows users from other locations to access high-quality real-world and up-to-date information about events happening in another location, and socialize with others hyper-interactively. Nevertheless, receiving continual, smooth updates generated by others from the Metaverse is a challenging task due to the large data size of the virtual world graphics and the need for low latency transmission. With the development of Mobile Augmented Reality (MAR), users can interact via the Metaverse in a highly interactive manner, even under mobility. Hence in our work, we considered an environment with users in moving Internet of Vehicles (IoV), downloading real-time virtual world updates from Metaverse Service Provider Cell Stations (MSPCSs) via wireless communications. We design an environment with multiple cell stations, where there will be a handover of users' virtual world graphic download tasks between cell stations. As transmission latency is the primary concern in receiving virtual world updates under mobility, our work aims to allocate system resources to minimize the total time taken for users in vehicles to download their virtual world scenes from the cell stations. We utilize deep reinforcement learning and evaluate the performance of the algorithms under different environmental configurations. Our work provides a use case of the Metaverse over AI-enabled 6G communications.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.