Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Semigroup intersection problems in the Heisenberg groups (2209.13343v2)

Published 27 Sep 2022 in math.GR and cs.DM

Abstract: We consider two algorithmic problems concerning sub-semigroups of Heisenberg groups and, more generally, two-step nilpotent groups. The first problem is Intersection Emptiness, which asks whether a finite number of given finitely generated semigroups have empty intersection. This problem was first studied by Markov in the 1940s. We show that Intersection Emptiness is PTIME decidable in the Heisenberg groups $\operatorname{H}{n}(\mathbb{K})$ over any algebraic number field $\mathbb{K}$, as well as in direct products of Heisenberg groups. We also extend our decidability result to arbitrary finitely generated 2-step nilpotent groups. The second problem is Orbit Intersection, which asks whether the orbits of two matrices under multiplication by two semigroups intersect with each other. This problem was first studied by Babai et al. (1996), who showed its decidability within commutative matrix groups. We show that Orbit Intersection is decidable within the Heisenberg group $\operatorname{H}{3}(\mathbb{Q})$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.