Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quantum Speedups of Optimizing Approximately Convex Functions with Applications to Logarithmic Regret Stochastic Convex Bandits (2209.12897v1)

Published 26 Sep 2022 in quant-ph, cs.LG, and math.OC

Abstract: We initiate the study of quantum algorithms for optimizing approximately convex functions. Given a convex set ${\cal K}\subseteq\mathbb{R}{n}$ and a function $F\colon\mathbb{R}{n}\to\mathbb{R}$ such that there exists a convex function $f\colon\mathcal{K}\to\mathbb{R}$ satisfying $\sup_{x\in{\cal K}}|F(x)-f(x)|\leq \epsilon/n$, our quantum algorithm finds an $x{*}\in{\cal K}$ such that $F(x{*})-\min_{x\in{\cal K}} F(x)\leq\epsilon$ using $\tilde{O}(n{3})$ quantum evaluation queries to $F$. This achieves a polynomial quantum speedup compared to the best-known classical algorithms. As an application, we give a quantum algorithm for zeroth-order stochastic convex bandits with $\tilde{O}(n{5}\log{2} T)$ regret, an exponential speedup in $T$ compared to the classical $\Omega(\sqrt{T})$ lower bound. Technically, we achieve quantum speedup in $n$ by exploiting a quantum framework of simulated annealing and adopting a quantum version of the hit-and-run walk. Our speedup in $T$ for zeroth-order stochastic convex bandits is due to a quadratic quantum speedup in multiplicative error of mean estimation.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.