Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast-FNet: Accelerating Transformer Encoder Models via Efficient Fourier Layers (2209.12816v2)

Published 26 Sep 2022 in cs.CL, cs.AI, cs.GL, and eess.AS

Abstract: Transformer-based LLMs utilize the attention mechanism for substantial performance improvements in almost all NLP tasks. Similar attention structures are also extensively studied in several other areas. Although the attention mechanism enhances the model performances significantly, its quadratic complexity prevents efficient processing of long sequences. Recent works focused on eliminating the disadvantages of computational inefficiency and showed that transformer-based models can still reach competitive results without the attention layer. A pioneering study proposed the FNet, which replaces the attention layer with the Fourier Transform (FT) in the transformer encoder architecture. FNet achieves competitive performances concerning the original transformer encoder model while accelerating training process by removing the computational burden of the attention mechanism. However, the FNet model ignores essential properties of the FT from the classical signal processing that can be leveraged to increase model efficiency further. We propose different methods to deploy FT efficiently in transformer encoder models. Our proposed architectures have smaller number of model parameters, shorter training times, less memory usage, and some additional performance improvements. We demonstrate these improvements through extensive experiments on common benchmarks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.