Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rethinking Motion Deblurring Training: A Segmentation-Based Method for Simulating Non-Uniform Motion Blurred Images (2209.12675v1)

Published 26 Sep 2022 in cs.CV

Abstract: Successful training of end-to-end deep networks for real motion deblurring requires datasets of sharp/blurred image pairs that are realistic and diverse enough to achieve generalization to real blurred images. Obtaining such datasets remains a challenging task. In this paper, we first review the limitations of existing deblurring benchmark datasets from the perspective of generalization to blurry images in the wild. Secondly, we propose an efficient procedural methodology to generate sharp/blurred image pairs, based on a simple yet effective model for the formation of blurred images. This allows generating virtually unlimited realistic and diverse training pairs. We demonstrate the effectiveness of the proposed dataset by training existing deblurring architectures on the simulated pairs and evaluating them across four standard datasets of real blurred images. We observed superior generalization performance for the ultimate task of deblurring real motion-blurred photos of dynamic scenes when training with the proposed method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.