Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the Complexity of Deterministic Nonsmooth and Nonconvex Optimization (2209.12463v2)

Published 26 Sep 2022 in math.OC, cs.CC, and cs.DS

Abstract: In this paper, we present several new results on minimizing a nonsmooth and nonconvex function under a Lipschitz condition. Recent work shows that while the classical notion of Clarke stationarity is computationally intractable up to some sufficiently small constant tolerance, the randomized first-order algorithms find a $(\delta, \epsilon)$-Goldstein stationary point with the complexity bound of $\tilde{O}(\delta{-1}\epsilon{-3})$, which is independent of dimension $d \geq 1$~\citep{Zhang-2020-Complexity, Davis-2022-Gradient, Tian-2022-Finite}. However, the deterministic algorithms have not been fully explored, leaving open several problems in nonsmooth nonconvex optimization. Our first contribution is to demonstrate that the randomization is \textit{necessary} to obtain a dimension-independent guarantee, by proving a lower bound of $\Omega(d)$ for any deterministic algorithm that has access to both $1{st}$ and $0{th}$ oracles. Furthermore, we show that the $0{th}$ oracle is \textit{essential} to obtain a finite-time convergence guarantee, by showing that any deterministic algorithm with only the $1{st}$ oracle is not able to find an approximate Goldstein stationary point within a finite number of iterations up to sufficiently small constant parameter and tolerance. Finally, we propose a deterministic smoothing approach under the \textit{arithmetic circuit} model where the resulting smoothness parameter is exponential in a certain parameter $M > 0$ (e.g., the number of nodes in the representation of the function), and design a new deterministic first-order algorithm that achieves a dimension-independent complexity bound of $\tilde{O}(M\delta{-1}\epsilon{-3})$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.