Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Certifying Parity Reasoning Efficiently Using Pseudo-Boolean Proofs (2209.12185v1)

Published 25 Sep 2022 in cs.LO

Abstract: The dramatic improvements in combinatorial optimization algorithms over the last decades have had a major impact in artificial intelligence, operations research, and beyond, but the output of current state-of-the-art solvers is often hard to verify and is sometimes wrong. For Boolean satisfiability (SAT) solvers proof logging has been introduced as a way to certify correctness, but the methods used seem hard to generalize to stronger paradigms. What is more, even for enhanced SAT techniques such as parity (XOR) reasoning, cardinality detection, and symmetry handling, it has remained beyond reach to design practically efficient proofs in the standard DRAT format. In this work, we show how to instead use pseudo-Boolean inequalities with extension variables to concisely justify XOR reasoning. Our experimental evaluation of a SAT solver integration shows a dramatic decrease in proof logging and verification time compared to existing DRAT methods. Since our method is a strict generalization of DRAT, and readily lends itself to expressing also 0-1 programming and even constraint programming problems, we hope this work points the way towards a unified approach for efficient machine-verifiable proofs for a rich class of combinatorial optimization paradigms.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.