Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Using Multiple Code Representations to Prioritize Static Analysis Warnings (2209.12181v2)

Published 25 Sep 2022 in cs.SE

Abstract: In order to ensure the quality of software and prevent attacks from hackers on critical systems, static analysis tools are frequently utilized to detect vulnerabilities in the early development phase. However, these tools often report a large number of warnings with a high false-positive rate, which causes many difficulties for developers. In this paper, we introduce VulRG, a novel approach to address this problem. Specifically, VulRG predicts and ranks the warnings based on their likelihoods to be true positive. To predict that likelihood, VulRG combines two deep learning models CNN and BiGRU to capture the context of each warning in terms of program syntax, control flow, and program dependence. Our experimental results on a real-world dataset of 6,620 warnings show that VulRG's Recall at Top-50% is 90.9%. This means that using VulRG, 90% of the vulnerabilities can be found by examining only 50% of the warnings. Moreover, at Top-5%, VulRG can improve the state-of-the-art approach by +30% in both Precision and Recall.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.