Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepChrome 2.0: Investigating and Improving Architectures, Visualizations, & Experiments (2209.11923v1)

Published 24 Sep 2022 in cs.LG

Abstract: Histone modifications play a critical role in gene regulation. Consequently, predicting gene expression from histone modification signals is a highly motivated problem in epigenetics. We build upon the work of DeepChrome by Singh et al. (2016), who trained classifiers that map histone modification signals to gene expression. We present a novel visualization technique for providing insight into combinatorial relationships among histone modifications for gene regulation that uses a generative adversarial network to generate histone modification signals. We also explore and compare various architectural changes, with results suggesting that the 645k-parameter convolutional neural network from DeepChrome has the same predictive power as a 12-parameter linear network. Results from cross-cell prediction experiments, where the model is trained and tested on datasets of varying sizes, cell-types, and correlations, suggest the relationship between histone modification signals and gene expression is independent of cell type. We release our PyTorch re-implementation of DeepChrome on GitHub \footnote{\url{github.com/ssss1029/gene_expression_294}}.\parfillskip=0pt

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Saurav Kadavath (14 papers)
  2. Samuel Paradis (10 papers)
  3. Jacob Yeung (4 papers)

Summary

We haven't generated a summary for this paper yet.