Papers
Topics
Authors
Recent
2000 character limit reached

A Focused Study on Sequence Length for Dialogue Summarization (2209.11910v2)

Published 24 Sep 2022 in cs.CL and cs.HC

Abstract: Output length is critical to dialogue summarization systems. The dialogue summary length is determined by multiple factors, including dialogue complexity, summary objective, and personal preferences. In this work, we approach dialogue summary length from three perspectives. First, we analyze the length differences between existing models' outputs and the corresponding human references and find that summarization models tend to produce more verbose summaries due to their pretraining objectives. Second, we identify salient features for summary length prediction by comparing different model settings. Third, we experiment with a length-aware summarizer and show notable improvement on existing models if summary length can be well incorporated. Analysis and experiments are conducted on popular DialogSum and SAMSum datasets to validate our findings.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com