Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

From Weakly Supervised Learning to Active Learning (2209.11629v1)

Published 23 Sep 2022 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: Applied mathematics and machine computations have raised a lot of hope since the recent success of supervised learning. Many practitioners in industries have been trying to switch from their old paradigms to machine learning. Interestingly, those data scientists spend more time scrapping, annotating and cleaning data than fine-tuning models. This thesis is motivated by the following question: can we derive a more generic framework than the one of supervised learning in order to learn from clutter data? This question is approached through the lens of weakly supervised learning, assuming that the bottleneck of data collection lies in annotation. We model weak supervision as giving, rather than a unique target, a set of target candidates. We argue that one should look for an optimistic'' function that matches most of the observations. This allows us to derive a principle to disambiguate partial labels. We also discuss the advantage to incorporate unsupervised learning techniques into our framework, in particular manifold regularization approached through diffusion techniques, for which we derived a new algorithm that scales better with input dimension then the baseline method. Finally, we switch from passive to active weakly supervised learning, introducing theactive labeling'' framework, in which a practitioner can query weak information about chosen data. Among others, we leverage the fact that one does not need full information to access stochastic gradients and perform stochastic gradient descent.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.