Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An extension to VORO++ for multithreaded computation of Voronoi cells (2209.11606v2)

Published 23 Sep 2022 in physics.comp-ph, cs.CG, cs.DC, cs.NA, math.NA, and physics.app-ph

Abstract: VORO++ is a software library written in C++ for computing the Voronoi tessellation, a technique in computational geometry that is widely used for analyzing systems of particles. VORO++ was released in 2009 and is based on computing the Voronoi cell for each particle individually. Here, we take advantage of modern computer hardware, and extend the original serial version to allow for multithreaded computation of Voronoi cells via the OpenMP application programming interface. We test the performance of the code, and demonstrate that we can achieve parallel efficiencies greater than 95% in many cases. The multithreaded extension follows standard OpenMP programming paradigms, allowing it to be incorporated into other programs. We provide an example of this using the VoroTop software library, performing a multithreaded Voronoi cell topology analysis of up to 102.4 million particles.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (81)
  1. doi:10.1145/323233.323264.
  2. doi:10.1007/BFb0035852.
  3. doi:10.1103/PhysRevE.83.041301.
  4. doi:10.1103/PhysRevE.89.042208.
  5. doi:10.1016/j.nucengdes.2013.07.010.
  6. doi:10.1039/C2SM25936B.
  7. doi:10.1039/B911140A.
  8. doi:10.1016/j.actamat.2013.08.003.
  9. doi:10.1088/0965-0393/22/6/065007.
  10. doi:10.1209/0295-5075/112/66003.
  11. doi:10.1209/0295-5075/105/48004.
  12. doi:10.1021/acs.jpclett.8b02715.
  13. doi:10.1103/PhysRevE.99.052603.
  14. doi:10.1016/j.commatsci.2012.08.006.
  15. doi:10.1016/j.msea.2015.08.085.
  16. doi:10.1016/j.cma.2017.10.005.
  17. doi:10.1016/0377-0273(94)90092-2.
  18. doi:10.1088/1757-899x/529/1/012031.
  19. doi:0.1088/0022-3727/47/47/472001.
  20. doi:10.1016/j.jcp.2015.06.026.
  21. doi:10.1016/j.jcp.2010.03.011.
  22. doi:10.1007/s10236-008-0157-2.
  23. doi:10.1016/j.cageo.2014.05.002.
  24. doi:10.1016/j.compgeo.2016.04.008.
  25. doi:10.1051/0004-6361/201322281.
  26. doi:10.1109/LRA.2021.3057568.
  27. doi:10.1016/j.jqsrt.2015.10.025.
  28. doi:10.1137/070710123.
  29. doi:10.1119/5.0087591.
  30. doi:10.1145/235815.235821.
  31. http://www.qhull.org/.
  32. https://www.cgal.org.
  33. doi:10.1007/BFb0014497.
  34. https://www.cs.cmu.edu/~quake/triangle.html.
  35. doi:10.1063/1.3215722.
  36. http://math.lbl.gov/voro++/.
  37. doi:10.1103/PhysRevE.74.021306.
  38. doi:10.1016/j.powtec.2010.01.009.
  39. doi:10.1006/jcph.1995.1039.
  40. https://www.lammps.org.
  41. doi:10.1088/0965-0393/18/1/015012.
  42. https://www.ovito.org/.
  43. doi:10.1145/10515.10549.
  44. doi:10.1007/BF01840357.
  45. doi:10.1093/comjnl/21.2.168.
  46. doi:10.1007/BF00977785.
  47. doi:10.1073/pnas.95.15.8431.
  48. doi:10.1023/A:1011234012449.
  49. doi:10.1111/j.1538-4632.1973.tb01003.x.
  50. doi:10.1145/355921.355927.
  51. doi:10.1016/0098-3004(83)90006-7.
  52. doi:10.2307/3213616.
  53. doi:10.1073/pnas.1505788112.
  54. doi:10.1109/TIT.1982.1056489.
  55. doi:10.1137/S0036144599352836.
  56. doi:10.1103/PhysRevLett.109.095505.
  57. doi:10.1103/PhysRevE.88.063309.
  58. doi:10.1088/1742-5468/2016/04/043103.
  59. doi:10.1088/1742-5468/abb6e3.
  60. doi:10.1088/1361-651x/aa9a01.
  61. https://www.vorotop.org.
  62. doi:10.1137/0114062.
  63. doi:10.1063/5.0014475.
  64. doi:10.1177/10943420211008288.
  65. doi:10.1016/j.micromeso.2011.08.020.
  66. doi:10.1016/j.jmgm.2013.05.007.
  67. doi:10.1039/C3CE41057A.
  68. doi:10.1080/14686996.2018.1439253.
  69. doi:10.1016/j.cpc.2014.08.020.
  70. doi:10.1016/j.ascom.2016.06.003.
  71. doi:10.1109/99.660313.
  72. https://www.openmp.org.
  73. http://www.cplusplus.com/reference/iterator/RandomAccessIterator.
  74. https://cplusplus.com/reference/iterator/ForwardIterator/.
  75. doi:10.1088/0959-5309/43/5/301.
  76. doi:10.1016/j.cpc.2016.11.005.
  77. doi:10.1088/0965-0393/20/4/045021.
  78. doi:10.1145/361002.361007.
  79. doi:10.1007/BF00288933.
  80. doi:10.1007/s10915-006-9122-8.
  81. doi:10.1007/s10915-012-9619-2.
Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube