Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

3DGTN: 3D Dual-Attention GLocal Transformer Network for Point Cloud Classification and Segmentation (2209.11255v2)

Published 21 Sep 2022 in cs.CV

Abstract: Although the application of Transformers in 3D point cloud processing has achieved significant progress and success, it is still challenging for existing 3D Transformer methods to efficiently and accurately learn both valuable global features and valuable local features for improved applications. This paper presents a novel point cloud representational learning network, called 3D Dual Self-attention Global Local (GLocal) Transformer Network (3DGTN), for improved feature learning in both classification and segmentation tasks, with the following key contributions. First, a GLocal Feature Learning (GFL) block with the dual self-attention mechanism (i.e., a novel Point-Patch Self-Attention, called PPSA, and a channel-wise self-attention) is designed to efficiently learn the GLocal context information. Second, the GFL block is integrated with a multi-scale Graph Convolution-based Local Feature Aggregation (LFA) block, leading to a Global-Local (GLocal) information extraction module that can efficiently capture critical information. Third, a series of GLocal modules are used to construct a new hierarchical encoder-decoder structure to enable the learning of "GLocal" information in different scales in a hierarchical manner. The proposed framework is evaluated on both classification and segmentation datasets, demonstrating that the proposed method is capable of outperforming many state-of-the-art methods on both classification and segmentation tasks.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.