Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Modeling cognitive load as a self-supervised brain rate with electroencephalography and deep learning (2209.10992v1)

Published 21 Sep 2022 in eess.SP, cs.AI, cs.HC, cs.LG, and q-bio.NC

Abstract: The principal reason for measuring mental workload is to quantify the cognitive cost of performing tasks to predict human performance. Unfortunately, a method for assessing mental workload that has general applicability does not exist yet. This research presents a novel self-supervised method for mental workload modelling from EEG data employing Deep Learning and a continuous brain rate, an index of cognitive activation, without requiring human declarative knowledge. This method is a convolutional recurrent neural network trainable with spatially preserving spectral topographic head-maps from EEG data to fit the brain rate variable. Findings demonstrate the capacity of the convolutional layers to learn meaningful high-level representations from EEG data since within-subject models had a test Mean Absolute Percentage Error average of 11%. The addition of a Long-Short Term Memory layer for handling sequences of high-level representations was not significant, although it did improve their accuracy. Findings point to the existence of quasi-stable blocks of learnt high-level representations of cognitive activation because they can be induced through convolution and seem not to be dependent on each other over time, intuitively matching the non-stationary nature of brain responses. Across-subject models, induced with data from an increasing number of participants, thus containing more variability, obtained a similar accuracy to the within-subject models. This highlights the potential generalisability of the induced high-level representations across people, suggesting the existence of subject-independent cognitive activation patterns. This research contributes to the body of knowledge by providing scholars with a novel computational method for mental workload modelling that aims to be generally applicable, does not rely on ad-hoc human-crafted models supporting replicability and falsifiability.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)