Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

How Good Is Neural Combinatorial Optimization? A Systematic Evaluation on the Traveling Salesman Problem (2209.10913v2)

Published 22 Sep 2022 in cs.NE

Abstract: Traditional solvers for tackling combinatorial optimization (CO) problems are usually designed by human experts. Recently, there has been a surge of interest in utilizing deep learning, especially deep reinforcement learning, to automatically learn effective solvers for CO. The resultant new paradigm is termed neural combinatorial optimization (NCO). However, the advantages and disadvantages of NCO relative to other approaches have not been empirically or theoretically well studied. This work presents a comprehensive comparative study of NCO solvers and alternative solvers. Specifically, taking the traveling salesman problem as the testbed problem, the performance of the solvers is assessed in five aspects, i.e., effectiveness, efficiency, stability, scalability, and generalization ability. Our results show that the solvers learned by NCO approaches, in general, still fall short of traditional solvers in nearly all these aspects. A potential benefit of NCO solvers would be their superior time and energy efficiency for small-size problem instances when sufficient training instances are available. Hopefully, this work would help with a better understanding of the strengths and weaknesses of NCO and provide a comprehensive evaluation protocol for further benchmarking NCO approaches in comparison to other approaches.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.