Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

A CT-Based Airway Segmentation Using U$^2$-net Trained by the Dice Loss Function (2209.10796v1)

Published 22 Sep 2022 in eess.IV and cs.CV

Abstract: Airway segmentation from chest computed tomography scans has played an essential role in the pulmonary disease diagnosis. The computer-assisted airway segmentation based on the U-net architecture is more efficient and accurate compared to the manual segmentation. In this paper we employ the U$2$-net trained by the Dice loss function to model the airway tree from the multi-site CT scans based on 299 training CT scans provided by the ATM'22. The derived saliency probability map from the training is applied to the validation data to extract the corresponding airway trees. The observation shows that the majority of the segmented airway trees behave well from the perspective of accuracy and connectivity. Refinements such as non-airway regions labeling and removing are applied to certain obtained airway tree models to display the largest component of the binary results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.