Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A CT-Based Airway Segmentation Using U$^2$-net Trained by the Dice Loss Function (2209.10796v1)

Published 22 Sep 2022 in eess.IV and cs.CV

Abstract: Airway segmentation from chest computed tomography scans has played an essential role in the pulmonary disease diagnosis. The computer-assisted airway segmentation based on the U-net architecture is more efficient and accurate compared to the manual segmentation. In this paper we employ the U$2$-net trained by the Dice loss function to model the airway tree from the multi-site CT scans based on 299 training CT scans provided by the ATM'22. The derived saliency probability map from the training is applied to the validation data to extract the corresponding airway trees. The observation shows that the majority of the segmented airway trees behave well from the perspective of accuracy and connectivity. Refinements such as non-airway regions labeling and removing are applied to certain obtained airway tree models to display the largest component of the binary results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube