Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Nesting Forward Automatic Differentiation for Memory-Efficient Deep Neural Network Training (2209.10778v1)

Published 22 Sep 2022 in cs.LG

Abstract: An activation function is an element-wise mathematical function and plays a crucial role in deep neural networks (DNN). Many novel and sophisticated activation functions have been proposed to improve the DNN accuracy but also consume massive memory in the training process with back-propagation. In this study, we propose the nested forward automatic differentiation (Forward-AD), specifically for the element-wise activation function for memory-efficient DNN training. We deploy nested Forward-AD in two widely-used deep learning frameworks, TensorFlow and PyTorch, which support the static and dynamic computation graph, respectively. Our evaluation shows that nested Forward-AD reduces the memory footprint by up to 1.97x than the baseline model and outperforms the recomputation by 20% under the same memory reduction ratio.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.