Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

LQR Control with Sparse Adversarial Disturbances (2209.10629v1)

Published 21 Sep 2022 in eess.SY and cs.SY

Abstract: Recent developments in cyber-physical systems and event-triggered control have led to an increased interest in the impact of sparse disturbances on dynamical processes. We study Linear Quadratic Regulator (LQR) control under sparse disturbances by analyzing three distinct policies: the blind online policy, the disturbance-aware policy, and the optimal offline policy. We derive the two-dimensional recurrence structure of the optimal disturbance-aware policy, under the assumption that the controller has information about future disturbance values with only a probabilistic model of their locations in time. Under mild conditions, we show that the disturbance-aware policy converges to the blind online policy if the number of disturbances grows sublinearly in the time horizon. Finally, we provide a finite-horizon regret bound between the blind online policy and optimal offline policy, which is proven to be quadratic in the number of disturbances and in their magnitude. This provides a useful characterization of the suboptimality of a standard LQR controller when confronted with unexpected sparse perturbations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.