Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

FedFOR: Stateless Heterogeneous Federated Learning with First-Order Regularization (2209.10537v1)

Published 21 Sep 2022 in cs.LG, cs.AI, and cs.CV

Abstract: Federated Learning (FL) seeks to distribute model training across local clients without collecting data in a centralized data-center, hence removing data-privacy concerns. A major challenge for FL is data heterogeneity (where each client's data distribution can differ) as it can lead to weight divergence among local clients and slow global convergence. The current SOTA FL methods designed for data heterogeneity typically impose regularization to limit the impact of non-IID data and are stateful algorithms, i.e., they maintain local statistics over time. While effective, these approaches can only be used for a special case of FL involving only a small number of reliable clients. For the more typical applications of FL where the number of clients is large (e.g., edge-device and mobile applications), these methods cannot be applied, motivating the need for a stateless approach to heterogeneous FL which can be used for any number of clients. We derive a first-order gradient regularization to penalize inconsistent local updates due to local data heterogeneity. Specifically, to mitigate weight divergence, we introduce a first-order approximation of the global data distribution into local objectives, which intuitively penalizes updates in the opposite direction of the global update. The end result is a stateless FL algorithm that achieves 1) significantly faster convergence (i.e., fewer communication rounds) and 2) higher overall converged performance than SOTA methods under non-IID data distribution. Importantly, our approach does not impose unrealistic limits on the client size, enabling learning from a large number of clients as is typical in most FL applications.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube