Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Off-Policy Risk Assessment in Markov Decision Processes (2209.10444v1)

Published 21 Sep 2022 in cs.LG, cs.AI, and stat.ML

Abstract: Addressing such diverse ends as safety alignment with human preferences, and the efficiency of learning, a growing line of reinforcement learning research focuses on risk functionals that depend on the entire distribution of returns. Recent work on \emph{off-policy risk assessment} (OPRA) for contextual bandits introduced consistent estimators for the target policy's CDF of returns along with finite sample guarantees that extend to (and hold simultaneously over) all risk. In this paper, we lift OPRA to Markov decision processes (MDPs), where importance sampling (IS) CDF estimators suffer high variance on longer trajectories due to small effective sample size. To mitigate these problems, we incorporate model-based estimation to develop the first doubly robust (DR) estimator for the CDF of returns in MDPs. This estimator enjoys significantly less variance and, when the model is well specified, achieves the Cramer-Rao variance lower bound. Moreover, for many risk functionals, the downstream estimates enjoy both lower bias and lower variance. Additionally, we derive the first minimax lower bounds for off-policy CDF and risk estimation, which match our error bounds up to a constant factor. Finally, we demonstrate the precision of our DR CDF estimates experimentally on several different environments.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.