Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Capturing Bisimulation-Invariant Exponential-Time Complexity Classes (2209.10311v1)

Published 21 Sep 2022 in cs.LO and cs.CC

Abstract: Otto's Theorem characterises the bisimulation-invariant PTIME queries over graphs as exactly those that can be formulated in the polyadic mu-calculus, hinging on the Immerman-Vardi Theorem which characterises PTIME (over ordered structures) by First-Order Logic with least fixpoints. This connection has been extended to characterise bisimulation-invariant EXPTIME by an extension of the polyadic mu-calculus with functions on predicates, making use of Immerman's characterisation of EXPTIME by Second-Order Logic with least fixpoints. In this paper we show that the bisimulation-invariant versions of all classes in the exponential time hierarchy have logical counterparts which arise as extensions of the polyadic mu-calculus by higher-order functions. This makes use of the characterisation of k-EXPTIME by Higher-Order Logic (of order k+1) with least fixpoints, due to Freire and Martins.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.