Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The ReturnZero System for VoxCeleb Speaker Recognition Challenge 2022 (2209.10147v1)

Published 21 Sep 2022 in eess.AS, cs.AI, cs.LG, and cs.SD

Abstract: In this paper, we describe the top-scoring submissions for team RTZR VoxCeleb Speaker Recognition Challenge 2022 (VoxSRC-22) in the closed dataset, speaker verification Track 1. The top performed system is a fusion of 7 models, which contains 3 different types of model architectures. We focus on training models to learn extra-temporal information. Therefore, all models were trained with 4-6 second frames for each utterance. Also, we apply the Large Margin Fine-tuning strategy which has shown good performance on the previous challenges for some of our fusion models. While the evaluation process, we apply the scoring methods with adaptive symmetric normalization (AS-Norm) and matrix score average (MSA). Finally, we mix up models with logistic regression to fuse all the trained models. The final submission achieves 0.165 DCF and 2.912% EER on the VoxSRC22 test set.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.