Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Power of Explanations: Towards automatic debiasing in hate speech detection (2209.09975v1)

Published 7 Sep 2022 in cs.CL and cs.LG

Abstract: Hate speech detection is a common downstream application of NLP in the real world. In spite of the increasing accuracy, current data-driven approaches could easily learn biases from the imbalanced data distributions originating from humans. The deployment of biased models could further enhance the existing social biases. But unlike handling tabular data, defining and mitigating biases in text classifiers, which deal with unstructured data, are more challenging. A popular solution for improving machine learning fairness in NLP is to conduct the debiasing process with a list of potentially discriminated words given by human annotators. In addition to suffering from the risks of overlooking the biased terms, exhaustively identifying bias with human annotators are unsustainable since discrimination is variable among different datasets and may evolve over time. To this end, we propose an automatic misuse detector (MiD) relying on an explanation method for detecting potential bias. And built upon that, an end-to-end debiasing framework with the proposed staged correction is designed for text classifiers without any external resources required.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.