Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

De-speckling of Optical Coherence Tomography Images Using Anscombe Transform and a Noisier2noise Model (2209.09825v1)

Published 20 Sep 2022 in eess.IV

Abstract: Optical Coherence Tomography (OCT) image denoising is a fundamental problem as OCT images suffer from multiplicative speckle noise, resulting in poor visibility of retinal layers. The traditional denoising methods consider specific statistical properties of the noise, which are not always known. Furthermore, recent deep learning-based denoising methods require paired noisy and clean images, which are often difficult to obtain, especially medical images. Noise2Noise family architectures are generally proposed to overcome this issue by learning without noisy-clean image pairs. However, for that, multiple noisy observations from a single image are typically needed. Also, sometimes the experiments are demonstrated by simulating noises on clean synthetic images, which is not a realistic scenario. This work shows how a single real-world noisy observation of each image can be used to train a denoising network. Along with a theoretical understanding, our algorithm is experimentally validated using a publicly available OCT image dataset. Our approach incorporates Anscombe transform to convert the multiplicative noise model to additive Gaussian noise to make it suitable for OCT images. The quantitative results show that this method can outperform several other methods where a single noisy observation of an image is needed for denoising. The code and implementation of this paper will be available publicly upon acceptance of this paper.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.