Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Polynomial approximation of derivatives by the constrained mock-Chebyshev least squares operator (2209.09822v1)

Published 20 Sep 2022 in math.NA and cs.NA

Abstract: The constrained mock-Chebyshev least squares operator is a linear approximation operator based on an equispaced grid of points. Like other polynomial or rational approximation methods, it was recently introduced in order to defeat the Runge phenomenon that occurs when using polynomial interpolation on large sets of equally spaced points. The idea is to improve the mock-Chebyshev subset interpolation, where the considered function $f$ is interpolated only on a proper subset of the uniform grid, formed by nodes that mimic the behavior of Chebyshev--Lobatto nodes. In the mock-Chebyshev subset interpolation all remaining nodes are discarded, while in the constrained mock-Chebyshev least squares interpolation they are used in a simultaneous regression, with the aim to further improving the accuracy of the approximation provided by the mock-Chebyshev subset interpolation. The goal of this paper is two-fold. We discuss some theoretical aspects of the constrained mock-Chebyshev least squares operator and present new results. In particular, we introduce explicit representations of the error and its derivatives. Moreover, for a sufficiently smooth function $f$ in $[-1,1]$, we present a method for approximating the successive derivatives of $f$ at a point $x\in [-1,1]$, based on the constrained mock-Chebyshev least squares operator and provide estimates for these approximations. Numerical tests demonstrate the effectiveness of the proposed method.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.