Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FedToken: Tokenized Incentives for Data Contribution in Federated Learning (2209.09775v2)

Published 20 Sep 2022 in cs.LG, cs.DC, cs.GT, and cs.NI

Abstract: Incentives that compensate for the involved costs in the decentralized training of a Federated Learning (FL) model act as a key stimulus for clients' long-term participation. However, it is challenging to convince clients for quality participation in FL due to the absence of: (i) full information on the client's data quality and properties; (ii) the value of client's data contributions; and (iii) the trusted mechanism for monetary incentive offers. This often leads to poor efficiency in training and communication. While several works focus on strategic incentive designs and client selection to overcome this problem, there is a major knowledge gap in terms of an overall design tailored to the foreseen digital economy, including Web 3.0, while simultaneously meeting the learning objectives. To address this gap, we propose a contribution-based tokenized incentive scheme, namely \texttt{FedToken}, backed by blockchain technology that ensures fair allocation of tokens amongst the clients that corresponds to the valuation of their data during model training. Leveraging the engineered Shapley-based scheme, we first approximate the contribution of local models during model aggregation, then strategically schedule clients lowering the communication rounds for convergence and anchor ways to allocate \emph{affordable} tokens under a constrained monetary budget. Extensive simulations demonstrate the efficacy of our proposed method.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube