Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Detection of Malicious Websites Using Machine Learning Techniques (2209.09630v1)

Published 13 Sep 2022 in cs.CR and cs.LG

Abstract: In detecting malicious websites, a common approach is the use of blacklists which are not exhaustive in themselves and are unable to generalize to new malicious sites. Detecting newly encountered malicious websites automatically will help reduce the vulnerability to this form of attack. In this study, we explored the use of ten machine learning models to classify malicious websites based on lexical features and understand how they generalize across datasets. Specifically, we trained, validated, and tested these models on different sets of datasets and then carried out a cross-datasets analysis. From our analysis, we found that K-Nearest Neighbor is the only model that performs consistently high across datasets. Other models such as Random Forest, Decision Trees, Logistic Regression, and Support Vector Machines also consistently outperform a baseline model of predicting every link as malicious across all metrics and datasets. Also, we found no evidence that any subset of lexical features generalizes across models or datasets. This research should be relevant to cybersecurity professionals and academic researchers as it could form the basis for real-life detection systems or further research work.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube