Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Replicating Persistent Memory Key-Value Stores with Efficient RDMA Abstraction (2209.09459v1)

Published 20 Sep 2022 in cs.DC and cs.NI

Abstract: Combining persistent memory (PM) with RDMA is a promising approach to performant replicated distributed key-value stores (KVSs). However, existing replication approaches do not work well when applied to PM KVSs: 1) Using RPC induces software queueing and execution at backups, increasing request latency; 2) Using one-sided RDMA WRITE causes many streams of small PM writes, leading to severe device-level write amplification (DLWA) on PM. In this paper, we propose Rowan, an efficient RDMA abstraction to handle replication writes in PM KVSs; it aggregates concurrent remote writes from different servers, and lands these writes to PM in a sequential (thus low DLWA) and one-sided (thus low latency) manner. We realize Rowan with off-the-shelf RDMA NICs. Further, we build Rowan-KV, a log-structured PM KVS using Rowan for replication. Evaluation shows that under write-intensive workloads, compared with PM KVSs using RPC and RDMA WRITE for replication, Rowan-KV boosts throughput by 1.22X and 1.39X as well as lowers median PUT latency by 1.77X and 2.11X, respectively, while largely eliminating DLWA.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.