Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Non-Linguistic Supervision for Contrastive Learning of Sentence Embeddings (2209.09433v1)

Published 20 Sep 2022 in cs.CL

Abstract: Semantic representation learning for sentences is an important and well-studied problem in NLP. The current trend for this task involves training a Transformer-based sentence encoder through a contrastive objective with text, i.e., clustering sentences with semantically similar meanings and scattering others. In this work, we find the performance of Transformer models as sentence encoders can be improved by training with multi-modal multi-task losses, using unpaired examples from another modality (e.g., sentences and unrelated image/audio data). In particular, besides learning by the contrastive loss on text, our model clusters examples from a non-linguistic domain (e.g., visual/audio) with a similar contrastive loss at the same time. The reliance of our framework on unpaired non-linguistic data makes it language-agnostic, enabling it to be widely applicable beyond English NLP. Experiments on 7 semantic textual similarity benchmarks reveal that models trained with the additional non-linguistic (images/audio) contrastive objective lead to higher quality sentence embeddings. This indicates that Transformer models are able to generalize better by doing a similar task (i.e., clustering) with unpaired examples from different modalities in a multi-task fashion.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube