Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analyzing Machine Learning Models for Credit Scoring with Explainable AI and Optimizing Investment Decisions (2209.09362v1)

Published 19 Sep 2022 in cs.LG, cs.CY, and stat.ML

Abstract: This paper examines two different yet related questions related to explainable AI (XAI) practices. Machine learning (ML) is increasingly important in financial services, such as pre-approval, credit underwriting, investments, and various front-end and back-end activities. Machine Learning can automatically detect non-linearities and interactions in training data, facilitating faster and more accurate credit decisions. However, machine learning models are opaque and hard to explain, which are critical elements needed for establishing a reliable technology. The study compares various machine learning models, including single classifiers (logistic regression, decision trees, LDA, QDA), heterogeneous ensembles (AdaBoost, Random Forest), and sequential neural networks. The results indicate that ensemble classifiers and neural networks outperform. In addition, two advanced post-hoc model agnostic explainability techniques - LIME and SHAP are utilized to assess ML-based credit scoring models using the open-access datasets offered by US-based P2P Lending Platform, Lending Club. For this study, we are also using machine learning algorithms to develop new investment models and explore portfolio strategies that can maximize profitability while minimizing risk.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.