Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Revisiting Embeddings for Graph Neural Networks (2209.09338v4)

Published 19 Sep 2022 in cs.LG

Abstract: Current graph representation learning techniques use Graph Neural Networks (GNNs) to extract features from dataset embeddings. In this work, we examine the quality of these embeddings and assess how changing them can affect the accuracy of GNNs. We explore different embedding extraction techniques for both images and texts; and find that the performance of different GNN architectures is dependent on the embedding style used. We see a prevalence of bag of words (BoW) embeddings and text classification tasks in available graph datasets. Given the impact embeddings has on GNN performance. this leads to a phenomenon that GNNs being optimised for BoW vectors.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.