Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ALEXSIS-PT: A New Resource for Portuguese Lexical Simplification (2209.09034v2)

Published 19 Sep 2022 in cs.CL and cs.AI

Abstract: Lexical simplification (LS) is the task of automatically replacing complex words for easier ones making texts more accessible to various target populations (e.g. individuals with low literacy, individuals with learning disabilities, second language learners). To train and test models, LS systems usually require corpora that feature complex words in context along with their candidate substitutions. To continue improving the performance of LS systems we introduce ALEXSIS-PT, a novel multi-candidate dataset for Brazilian Portuguese LS containing 9,605 candidate substitutions for 387 complex words. ALEXSIS-PT has been compiled following the ALEXSIS protocol for Spanish opening exciting new avenues for cross-lingual models. ALEXSIS-PT is the first LS multi-candidate dataset that contains Brazilian newspaper articles. We evaluated four models for substitute generation on this dataset, namely mDistilBERT, mBERT, XLM-R, and BERTimbau. BERTimbau achieved the highest performance across all evaluation metrics.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: