Systematic Constructions of Bent-Negabent Functions, 2-Rotation Symmetric Bent-Negabent Functions and Their Duals (2209.08712v1)
Abstract: Bent-negabent functions have many important properties for their application in cryptography since they have the flat absolute spectrum under the both Walsh-Hadamard transform and nega-Hadamard transform. In this paper, we present four new systematic constructions of bent-negabent functions on $4k, 8k, 4k+2$ and $8k+2$ variables, respectively, by modifying the truth tables of two classes of quadratic bent-negabent functions with simple form. The algebraic normal forms and duals of these constructed functions are also determined. We further identify necessary and sufficient conditions for those bent-negabent functions which have the maximum algebraic degree. At last, by modifying the truth tables of a class of quadratic 2-rotation symmetric bent-negabent functions, we present a construction of 2-rotation symmetric bent-negabent functions with any possible algebraic degrees. Considering that there are probably no bent-negabent functions in the rotation symmetric class, it is the first significant attempt to construct bent-negabent functions in the generalized rotation symmetric class.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.