Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Online Pricing Incentive to Sample Fresh Information (2209.08711v1)

Published 19 Sep 2022 in eess.SY and cs.SY

Abstract: Today mobile users such as drivers are invited by content providers (e.g., Tripadvisor) to sample fresh information of diverse paths to control the age of information (AoI). However, selfish drivers prefer to travel through the shortest path instead of the others with extra costs in time and gas. To motivate drivers to route and sample diverse paths, this paper is the first to propose online pricing for a provider to economically reward drivers for diverse routing and control the actual AoI dynamics over time and spatial path domains. This online pricing optimization problem should be solved without knowing drivers' costs and even arrivals, and is intractable due to the curse of dimensionality in both time and space. If there is only one non-shortest path, we leverage the Markov decision process (MDP) techniques to analyze the problem. Accordingly, we design a linear-time algorithm for returning optimal online pricing, where a higher pricing reward is needed for a larger AoI. If there are a number of non-shortest paths, we prove that pricing one path at a time is optimal, yet it is not optimal to choose the path with the largest current AoI. Then we propose a new backward-clustered computation method and develop an approximation algorithm to alternate different paths to price over time. Perhaps surprisingly, our analysis of approximation ratio suggests that our algorithm's performance approaches closer to optimum given more paths.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.