Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

VisTaNet: Attention Guided Deep Fusion for Surface Roughness Classification (2209.08516v1)

Published 18 Sep 2022 in cs.CV and cs.LG

Abstract: Human texture perception is a weighted average of multi-sensory inputs: visual and tactile. While the visual sensing mechanism extracts global features, the tactile mechanism complements it by extracting local features. The lack of coupled visuotactile datasets in the literature is a challenge for studying multimodal fusion strategies analogous to human texture perception. This paper presents a visual dataset that augments an existing tactile dataset. We propose a novel deep fusion architecture that fuses visual and tactile data using four types of fusion strategies: summation, concatenation, max-pooling, and attention. Our model shows significant performance improvements (97.22%) in surface roughness classification accuracy over tactile only (SVM - 92.60%) and visual only (FENet-50 - 85.01%) architectures. Among the several fusion techniques, attention-guided architecture results in better classification accuracy. Our study shows that analogous to human texture perception, the proposed model chooses a weighted combination of the two modalities (visual and tactile), thus resulting in higher surface roughness classification accuracy; and it chooses to maximize the weightage of the tactile modality where the visual modality fails and vice-versa.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.