Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Empirical Analysis on Top-k Gradient Sparsification for Distributed Deep Learning in a Supercomputing Environment (2209.08497v1)

Published 18 Sep 2022 in cs.LG, cs.AI, and cs.DC

Abstract: To train deep learning models faster, distributed training on multiple GPUs is the very popular scheme in recent years. However, the communication bandwidth is still a major bottleneck of training performance. To improve overall training performance, recent works have proposed gradient sparsification methods that reduce the communication traffic significantly. Most of them require gradient sorting to select meaningful gradients such as Top-k gradient sparsification (Top-k SGD). However, Top-k SGD has a limit to increase the speed up overall training performance because gradient sorting is significantly inefficient on GPUs. In this paper, we conduct experiments that show the inefficiency of Top-k SGD and provide the insight of the low performance. Based on observations from our empirical analysis, we plan to yield a high performance gradient sparsification method as a future work.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)