Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sub-optimal Policy Aided Multi-Agent Reinforcement Learning for Flocking Control (2209.08347v1)

Published 17 Sep 2022 in cs.LG, cs.AI, cs.MA, and cs.RO

Abstract: Flocking control is a challenging problem, where multiple agents, such as drones or vehicles, need to reach a target position while maintaining the flock and avoiding collisions with obstacles and collisions among agents in the environment. Multi-agent reinforcement learning has achieved promising performance in flocking control. However, methods based on traditional reinforcement learning require a considerable number of interactions between agents and the environment. This paper proposes a sub-optimal policy aided multi-agent reinforcement learning algorithm (SPA-MARL) to boost sample efficiency. SPA-MARL directly leverages a prior policy that can be manually designed or solved with a non-learning method to aid agents in learning, where the performance of the policy can be sub-optimal. SPA-MARL recognizes the difference in performance between the sub-optimal policy and itself, and then imitates the sub-optimal policy if the sub-optimal policy is better. We leverage SPA-MARL to solve the flocking control problem. A traditional control method based on artificial potential fields is used to generate a sub-optimal policy. Experiments demonstrate that SPA-MARL can speed up the training process and outperform both the MARL baseline and the used sub-optimal policy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.