Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

CenterLineDet: CenterLine Graph Detection for Road Lanes with Vehicle-mounted Sensors by Transformer for HD Map Generation (2209.07734v2)

Published 16 Sep 2022 in cs.CV and cs.RO

Abstract: With the fast development of autonomous driving technologies, there is an increasing demand for high-definition (HD) maps, which provide reliable and robust prior information about the static part of the traffic environments. As one of the important elements in HD maps, road lane centerline is critical for downstream tasks, such as prediction and planning. Manually annotating centerlines for road lanes in HD maps is labor-intensive, expensive and inefficient, severely restricting the wide applications of autonomous driving systems. Previous work seldom explores the lane centerline detection problem due to the complicated topology and severe overlapping issues of lane centerlines. In this paper, we propose a novel method named CenterLineDet to detect lane centerlines for automatic HD map generation. Our CenterLineDet is trained by imitation learning and can effectively detect the graph of centerlines with vehicle-mounted sensors (i.e., six cameras and one LiDAR) through iterations. Due to the use of the DETR-like transformer network, CenterLineDet can handle complicated graph topology, such as lane intersections. The proposed approach is evaluated on the large-scale public dataset NuScenes. The superiority of our CenterLineDet is demonstrated by the comparative results. Our code, supplementary materials, and video demonstrations are available at \href{https://tonyxuqaq.github.io/projects/CenterLineDet/}{https://tonyxuqaq.github.io/projects/CenterLineDet/}.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.