Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Weighted Graph Sparsification by Linear Sketching (2209.07729v1)

Published 16 Sep 2022 in cs.DS

Abstract: A seminal work of [Ahn-Guha-McGregor, PODS'12] showed that one can compute a cut sparsifier of an unweighted undirected graph by taking a near-linear number of linear measurements on the graph. Subsequent works also studied computing other graph sparsifiers using linear sketching, and obtained near-linear upper bounds for spectral sparsifiers [Kapralov-Lee-Musco-Musco-Sidford, FOCS'14] and first non-trivial upper bounds for spanners [Filtser-Kapralov-Nouri, SODA'21]. All these linear sketching algorithms, however, only work on unweighted graphs. In this paper, we initiate the study of weighted graph sparsification by linear sketching by investigating a natural class of linear sketches that we call incidence sketches, in which each measurement is a linear combination of the weights of edges incident on a single vertex. Our results are: 1. Weighted cut sparsification: We give an algorithm that computes a $(1 + \epsilon)$-cut sparsifier using $\tilde{O}(n \epsilon{-3})$ linear measurements, which is nearly optimal. 2. Weighted spectral sparsification: We give an algorithm that computes a $(1 + \epsilon)$-spectral sparsifier using $\tilde{O}(n{6/5} \epsilon{-4})$ linear measurements. Complementing our algorithm, we then prove a superlinear lower bound of $\Omega(n{21/20-o(1)})$ measurements for computing some $O(1)$-spectral sparsifier using incidence sketches. 3. Weighted spanner computation: We focus on graphs whose largest/smallest edge weights differ by an $O(1)$ factor, and prove that, for incidence sketches, the upper bounds obtained by~[Filtser-Kapralov-Nouri, SODA'21] are optimal up to an $n{o(1)}$ factor.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.