Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 56 tok/s
Gemini 2.5 Flash 158 tok/s Pro
Kimi K2 198 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Weighted Graph Sparsification by Linear Sketching (2209.07729v1)

Published 16 Sep 2022 in cs.DS

Abstract: A seminal work of [Ahn-Guha-McGregor, PODS'12] showed that one can compute a cut sparsifier of an unweighted undirected graph by taking a near-linear number of linear measurements on the graph. Subsequent works also studied computing other graph sparsifiers using linear sketching, and obtained near-linear upper bounds for spectral sparsifiers [Kapralov-Lee-Musco-Musco-Sidford, FOCS'14] and first non-trivial upper bounds for spanners [Filtser-Kapralov-Nouri, SODA'21]. All these linear sketching algorithms, however, only work on unweighted graphs. In this paper, we initiate the study of weighted graph sparsification by linear sketching by investigating a natural class of linear sketches that we call incidence sketches, in which each measurement is a linear combination of the weights of edges incident on a single vertex. Our results are: 1. Weighted cut sparsification: We give an algorithm that computes a $(1 + \epsilon)$-cut sparsifier using $\tilde{O}(n \epsilon{-3})$ linear measurements, which is nearly optimal. 2. Weighted spectral sparsification: We give an algorithm that computes a $(1 + \epsilon)$-spectral sparsifier using $\tilde{O}(n{6/5} \epsilon{-4})$ linear measurements. Complementing our algorithm, we then prove a superlinear lower bound of $\Omega(n{21/20-o(1)})$ measurements for computing some $O(1)$-spectral sparsifier using incidence sketches. 3. Weighted spanner computation: We focus on graphs whose largest/smallest edge weights differ by an $O(1)$ factor, and prove that, for incidence sketches, the upper bounds obtained by~[Filtser-Kapralov-Nouri, SODA'21] are optimal up to an $n{o(1)}$ factor.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.