Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

$\tilde{O}(n+\mathrm{poly}(k))$-time Algorithm for Bounded Tree Edit Distance (2209.07524v1)

Published 15 Sep 2022 in cs.DS

Abstract: Computing the edit distance of two strings is one of the most basic problems in computer science and combinatorial optimization. Tree edit distance is a natural generalization of edit distance in which the task is to compute a measure of dissimilarity between two (unweighted) rooted trees with node labels. Perhaps the most notable recent application of tree edit distance is in NoSQL big databases, such as MongoDB, where each row of the database is a JSON document represented as a labeled rooted tree, and finding dissimilarity between two rows is a basic operation. Until recently, the fastest algorithm for tree edit distance ran in cubic time (Demaine, Mozes, Rossman, Weimann; TALG'10); however, Mao (FOCS'21) broke the cubic barrier for the tree edit distance problem using fast matrix multiplication. Given a parameter $k$ as an upper bound on the distance, an $O(n+k2)$-time algorithm for edit distance has been known since the 1980s due to the works of Myers (Algorithmica'86) and Landau and Vishkin (JCSS'88). The existence of an $\tilde{O}(n+\mathrm{poly}(k))$-time algorithm for tree edit distance has been posed as an open question, e.g., by Akmal and Jin (ICALP'21), who gave a state-of-the-art $\tilde{O}(nk2)$-time algorithm. In this paper, we answer this question positively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.