Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Recovery Guarantees for Distributed-OMP (2209.07230v2)

Published 15 Sep 2022 in stat.ML and cs.LG

Abstract: We study distributed schemes for high-dimensional sparse linear regression, based on orthogonal matching pursuit (OMP). Such schemes are particularly suited for settings where a central fusion center is connected to end machines, that have both computation and communication limitations. We prove that under suitable assumptions, distributed-OMP schemes recover the support of the regression vector with communication per machine linear in its sparsity and logarithmic in the dimension. Remarkably, this holds even at low signal-to-noise-ratios, where individual machines are unable to detect the support. Our simulations show that distributed-OMP schemes are competitive with more computationally intensive methods, and in some cases even outperform them.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.