Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The Cost of Training Machine Learning Models over Distributed Data Sources (2209.07124v2)

Published 15 Sep 2022 in cs.LG

Abstract: Federated learning is one of the most appealing alternatives to the standard centralized learning paradigm, allowing a heterogeneous set of devices to train a machine learning model without sharing their raw data. However, it requires a central server to coordinate the learning process, thus introducing potential scalability and security issues. In the literature, server-less federated learning approaches like gossip federated learning and blockchain-enabled federated learning have been proposed to mitigate these issues. In this work, we propose a complete overview of these three techniques proposing a comparison according to an integral set of performance indicators, including model accuracy, time complexity, communication overhead, convergence time, and energy consumption. An extensive simulation campaign permits to draw a quantitative analysis considering both feedforward and convolutional neural network models. Results show that gossip federated learning and standard federated solution are able to reach a similar level of accuracy, and their energy consumption is influenced by the machine learning model adopted, the software library, and the hardware used. Differently, blockchain-enabled federated learning represents a viable solution for implementing decentralized learning with a higher level of security, at the cost of an extra energy usage and data sharing. Finally, we identify open issues on the two decentralized federated learning implementations and provide insights on potential extensions and possible research directions in this new research field.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.