Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Efficient multigrid reduction-in-time for method-of-lines discretizations of linear advection (2209.06916v2)

Published 14 Sep 2022 in math.NA and cs.NA

Abstract: Parallel-in-time methods for partial differential equations (PDEs) have been the subject of intense development over recent decades, particularly for diffusion-dominated problems. It has been widely reported in the literature, however, that many of these methods perform quite poorly for advection-dominated problems. Here we analyze the particular iterative parallel-in-time algorithm of multigrid reduction-in-time (MGRIT) for discretizations of constant-wave-speed linear advection problems. We focus on common method-of-lines discretizations that employ upwind finite differences in space and Runge-Kutta methods in time. Using a convergence framework we developed in previous work, we prove for a subclass of these discretizations that, if using the standard approach of rediscretizing the fine-grid problem on the coarse grid, robust MGRIT convergence with respect to CFL number and coarsening factor is not possible. This poor convergence and non-robustness is caused, at least in part, by an inadequate coarse-grid correction for smooth Fourier modes known as characteristic components.We propose an alternative coarse-grid that provides a better correction of these modes. This coarse-grid operator is related to previous work and uses a semi-Lagrangian discretization combined with an implicitly treated truncation error correction. Theory and numerical experiments show the coarse-grid operator yields fast MGRIT convergence for many of the method-of-lines discretizations considered, including for both implicit and explicit discretizations of high order. Parallel results demonstrate substantial speed-up over sequential time-stepping.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube