Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ConvNeXt Based Neural Network for Audio Anti-Spoofing (2209.06434v5)

Published 14 Sep 2022 in cs.SD, cs.CL, and eess.AS

Abstract: With the rapid development of speech conversion and speech synthesis algorithms, automatic speaker verification (ASV) systems are vulnerable to spoofing attacks. In recent years, researchers had proposed a number of anti-spoofing methods based on hand-crafted features. However, using hand-crafted features rather than raw waveform will lose implicit information for anti-spoofing. Inspired by the promising performance of ConvNeXt in image classification tasks, we revise the ConvNeXt network architecture and propose a lightweight end-to-end anti-spoofing model. By integrating with the channel attention block and using the focal loss function, the proposed model can focus on the most informative sub-bands of speech representations and the difficult samples that are hard to classify. Experiments show that our proposed system could achieve an equal error rate of 0.64% and min-tDCF of 0.0187 for the ASVSpoof 2019 LA evaluation dataset, which outperforms the state-of-the-art systems.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.