Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reflectance-Oriented Probabilistic Equalization for Image Enhancement (2209.06406v1)

Published 14 Sep 2022 in cs.CV

Abstract: Despite recent advances in image enhancement, it remains difficult for existing approaches to adaptively improve the brightness and contrast for both low-light and normal-light images. To solve this problem, we propose a novel 2D histogram equalization approach. It assumes intensity occurrence and co-occurrence to be dependent on each other and derives the distribution of intensity occurrence (1D histogram) by marginalizing over the distribution of intensity co-occurrence (2D histogram). This scheme improves global contrast more effectively and reduces noise amplification. The 2D histogram is defined by incorporating the local pixel value differences in image reflectance into the density estimation to alleviate the adverse effects of dark lighting conditions. Over 500 images were used for evaluation, demonstrating the superiority of our approach over existing studies. It can sufficiently improve the brightness of low-light images while avoiding over-enhancement in normal-light images.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.