Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Embedding Irregular Colorings into Connected Factorizations (2209.06402v1)

Published 14 Sep 2022 in math.CO and cs.DM

Abstract: For $r:=(r_1,\dots,r_k)$, an $r$-factorization of the complete $\lambda$-fold $h$-uniform $n$-vertex hypergraph $\lambda K_nh$ is a partition of (the edges of) $\lambda K_nh$ into $F_1,\dots, F_k$ such that for $i=1,\dots,k$, $F_i$ is $r_i$-regular and spanning. Suppose that $n \geq (h-1)(2m-1)$. Given a partial $r$-factorization of $\lambda K_mh$, that is, a coloring (i.e. partition) $P$ of the edges of $\lambda K_mh$ into $F_1,\dots, F_k$ such that for $i=1,\dots,k$, $F_i$ is spanning and the degree of each vertex in $F_i$ is at most $r_i$, we find necessary and sufficient conditions that ensure $P$ can be extended to a connected $r$-factorization of $\lambda K_nh$ (i.e. an $r$-factorization in which each factor is connected). Moreover, we prove a general result that implies the following. Given a partial $s$-factorization $P$ of any sub-hypergraph of $\lambda K_mh$, where $s:=(s_1,\dots,s_q)$ and $q$ is not too big, we find necessary and sufficient conditions under which $P$ can be embedded into a connected $r$-factorization of $\lambda K_nh$. These results can be seen as unified generalizations of various classical combinatorial results such as Cruse's theorem on embedding partial symmetric latin squares, Baranyai's theorem on factorization of hypergraphs, Hilton's theorem on extending path decompositions into Hamiltonian decompositions, H\"{a}ggkvist and Hellgren's theorem on extending 1-factorizations, and Hilton, Johnson, Rodger, and Wantland's theorem on embedding connected factorizations.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.