Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SEEK: model extraction attack against hybrid secure inference protocols (2209.06373v1)

Published 14 Sep 2022 in cs.CR and cs.LG

Abstract: Security concerns about a machine learning model used in a prediction-as-a-service include the privacy of the model, the query and the result. Secure inference solutions based on homomorphic encryption (HE) and/or multiparty computation (MPC) have been developed to protect all the sensitive information. One of the most efficient type of solution utilizes HE for linear layers, and MPC for non-linear layers. However, for such hybrid protocols with semi-honest security, an adversary can malleate the intermediate features in the inference process, and extract model information more effectively than methods against inference service in plaintext. In this paper, we propose SEEK, a general extraction method for hybrid secure inference services outputing only class labels. This method can extract each layer of the target model independently, and is not affected by the depth of the model. For ResNet-18, SEEK can extract a parameter with less than 50 queries on average, with average error less than $0.03\%$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.