Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Analytics and Machine Learning Powered Wireless Network Optimization and Planning (2209.06352v1)

Published 14 Sep 2022 in eess.SY, cs.NI, and cs.SY

Abstract: It is important that the wireless network is well optimized and planned, using the limited wireless spectrum resources, to serve the explosively growing traffic and diverse applications needs of end users. Considering the challenges of dynamics and complexity of the wireless systems, and the scale of the networks, it is desirable to have solutions to automatically monitor, analyze, optimize, and plan the network. This article discusses approaches and solutions of data analytics and machine learning powered optimization and planning. The approaches include analyzing some important metrics of performances and experiences, at the lower layers and upper layers of open systems interconnection (OSI) model, as well as deriving a metric of the end user perceived network congestion indicator. The approaches include monitoring and diagnosis such as anomaly detection of the metrics, root cause analysis for poor performances and experiences. The approaches include enabling network optimization with tuning recommendations, directly targeting to optimize the end users experiences, via sensitivity modeling and analysis of the upper layer metrics of the end users experiences v.s. the improvement of the lower layers metrics due to tuning the hardware configurations. The approaches also include deriving predictive metrics for network planning, traffic demand distributions and trends, detection and prediction of the suppressed traffic demand, and the incentives of traffic gains if the network is upgraded. These approaches of optimization and planning are for accurate detection of optimization and upgrading opportunities at a large scale, enabling more effective optimization and planning such as tuning cells configurations, upgrading cells capacity with more advanced technologies or new hardware, adding more cells, etc., improving the network performances and providing better experiences to end users.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.