Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PROVGEN: A Privacy-Preserving Approach for Outcome Validation in Genomic Research (2209.06327v7)

Published 13 Sep 2022 in cs.CR

Abstract: As genomic research has grown increasingly popular in recent years, dataset sharing has remained limited due to privacy concerns. This limitation hinders the reproducibility and validation of research outcomes, both of which are essential for identifying computational errors during the research process. In this paper, we introduce PROVGEN, a privacy-preserving method for sharing genomic datasets that facilitates reproducibility and outcome validation in genome-wide association studies (GWAS). Our approach encodes genomic data into binary space and applies a two-stage process. First, we generate a differentially private version of the dataset using an XOR-based mechanism that incorporates biological characteristics. Second, we restore data utility by adjusting the Minor Allele Frequency (MAF) values in the noisy dataset to align with published MAFs using optimal transport. Finally, we convert the processed binary data back into its genomic representation and publish the resulting dataset. We evaluate PROVGEN on three real-world genomic datasets and compare it with local differential privacy and three synthesis-based methods. We show that our proposed scheme outperforms all existing methods in detecting GWAS outcome errors, achieves better data utility, and provides higher privacy protection against membership inference attacks (MIAs). By adopting our method, genomic researchers will be inclined to share differentially private datasets while maintaining high data quality for reproducibility of their findings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.