Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PROVGEN: A Privacy-Preserving Approach for Outcome Validation in Genomic Research (2209.06327v7)

Published 13 Sep 2022 in cs.CR

Abstract: As genomic research has grown increasingly popular in recent years, dataset sharing has remained limited due to privacy concerns. This limitation hinders the reproducibility and validation of research outcomes, both of which are essential for identifying computational errors during the research process. In this paper, we introduce PROVGEN, a privacy-preserving method for sharing genomic datasets that facilitates reproducibility and outcome validation in genome-wide association studies (GWAS). Our approach encodes genomic data into binary space and applies a two-stage process. First, we generate a differentially private version of the dataset using an XOR-based mechanism that incorporates biological characteristics. Second, we restore data utility by adjusting the Minor Allele Frequency (MAF) values in the noisy dataset to align with published MAFs using optimal transport. Finally, we convert the processed binary data back into its genomic representation and publish the resulting dataset. We evaluate PROVGEN on three real-world genomic datasets and compare it with local differential privacy and three synthesis-based methods. We show that our proposed scheme outperforms all existing methods in detecting GWAS outcome errors, achieves better data utility, and provides higher privacy protection against membership inference attacks (MIAs). By adopting our method, genomic researchers will be inclined to share differentially private datasets while maintaining high data quality for reproducibility of their findings.

Summary

We haven't generated a summary for this paper yet.